Hair cell regeneration in the avian auditory epithelium.

نویسندگان

  • Jennifer S Stone
  • Douglas A Cotanche
چکیده

Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing significant and functional regeneration in mammals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for supporting cell mitosis in response to acoustic trauma in the avian inner ear.

Acoustic overstimulation can lead to sensory cell (hair cell) loss in the auditory epithelium. Damaged hair cells in the organ of Corti (the mammalian auditory end-organ) degenerate and are replaced by non-sensory cells (supporting cells) which construct an irreversible scar. In birds, however, auditory hair cells which are damaged by acoustic trauma or ototoxic drugs may be replaced by new hai...

متن کامل

Hair cell regeneration in the avian vestibular epithelium.

Research conducted in the past 4 years has shown that the avian vestibular system retains the capacity to generate hair cells postnatally. In the present paper we review information on postnatal proliferation and differentiation of hair cells in the avian vestibular system. In addition, we present preliminary accounts of recent experiments regarding regeneration of vestibular hair cells followi...

متن کامل

Progenitor cell cycling during hair cell regeneration in the vestibular and auditory epithelia of the chick.

We investigated nucleotide-labeling patterns during ongoing hair cell regeneration in the avian vestibular epithelium and during drug-induced regeneration in the avian auditory epithelium. For utricle experiments, post-hatch chicks received an injection of bromodeoxyuridine (BrdU) and were allowed to survive from 2 hours to 110 days after the injection. Utricles were fixed and immunoreacted to ...

متن کامل

Hair cell regeneration after streptomycin toxicity in the avian vestibular epithelium.

Recent reports documented the ability of the posthatch avian vestibular epithelia to produce hair cells continually at a low rate. This project was designed to investigate whether, in addition, the chicken vestibular system is capable of regenerating its sensory epithelium in response to a lesion. Aminoglycoside injections were given to young birds in order to damage the vestibular epithelium. ...

متن کامل

Hair-cell regeneration in organ cultures of the postnatal chicken inner ear.

The sensory epithelium of the avian inner ear retains into adulthood progenitor cells for inner-ear hair cells and other cell types in the epithelium. Hair cells are produced normally on an ongoing basis in the vestibular sensory epithelium, and hair-cell production is increased after insult in both auditory and vestibular sensory epithelia. The details of postnatal hair-cell production are not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience letters

دوره 493 1-2  شماره 

صفحات  -

تاریخ انتشار 2007